In astronomy and cosmology, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation. Dark matter is implied by gravity effects that cannot be explained by general relativity unless more matter is present than can be observed. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within , and cosmic microwave background Anisotropy. Dark matter is thought to serve as gravitational scaffolding for cosmic structures. After the Big Bang, dark matter clumped into blobs along narrow filaments with superclusters of galaxies forming a cosmic web at scales on which entire galaxies appear like tiny particles.
In the standard Lambda-CDM model of cosmology, the mass–energy content of the universe is 5% ordinary matter, 26.8% dark matter, and 68.2% a form of energy known as dark energy. Thus, dark matter constitutes 85% of the total mass, while dark energy and dark matter constitute 95% of the total mass–energy content. While the density of dark matter is significant in the halo around a galaxy, its local density in the Solar System is much less than normal matter. The total of all the dark matter out to the orbit of Neptune would add up about 1017 kg, the same as a large asteroid.
Dark matter is not known to interact with ordinary baryonic matter and radiation except through gravity, making it difficult to detect in the laboratory. The most prevalent explanation is that dark matter is some as-yet-undiscovered subatomic particle, such as either weakly interacting massive particles (WIMPs) or . The other main possibility is that dark matter is composed of primordial black holes. See Figure 39.
Dark matter is classified as "cold", "warm", or "hot" according to velocity (more precisely, its free streaming length). Recent models have favored a cold dark matter scenario, in which structures emerge by the gradual accumulation of particles.
Although the astrophysics community generally accepts the existence of dark matter, a minority of astrophysicists, intrigued by specific observations that are not well explained by ordinary dark matter, argue for various modifications of the standard laws of general relativity. These include modified Newtonian dynamics, tensor–vector–scalar gravity, or entropic gravity. So far none of the proposed modified gravity theories can describe every piece of observational evidence at the same time, suggesting that even if gravity has to be modified, some form of dark matter will still be required.
Many of our supposed thousand million stars – perhaps a great majority of them – may be dark bodies.
In 1906, Henri Poincaré used the French language term matière ("dark matter") in discussing Kelvin's work. He found that the amount of dark matter would need to be less than that of visible matter, incorrectly, it turns out.
The second to suggest the existence of dark matter using stellar velocities was Dutch astronomer Jacobus Kapteyn in 1922.
A publication from 1930 by Swedish astronomer Knut Lundmark points to him being the first to realise that the universe must contain much more mass than can be observed. Dutch radio astronomy pioneer Jan Oort also hypothesized the existence of dark matter in 1932. Oort was studying stellar motions in Local Group and found the mass in the galactic plane must be greater than what was observed, but this measurement was later determined to be incorrect.
In 1933, Swiss astrophysicist Fritz Zwicky studied while working at Caltech and made a similar inference. Zwicky applied the virial theorem to the Coma Cluster and obtained evidence of unseen mass he called dunkle Materie ('dark matter'). Zwicky estimated its mass based on the motions of galaxies near its edge and compared that to an estimate based on its brightness and number of galaxies. He estimated the cluster had about 400 times more mass than was visually observable. The gravity effect of the visible galaxies was far too small for such fast orbits, thus mass must be hidden from view. Based on these conclusions, Zwicky inferred some unseen matter provided the mass and associated gravitational attraction to hold the cluster together.Some details of Zwicky's calculation and of more modern values are given in Zwicky's estimates were off by more than an order of magnitude, mainly due to an obsolete value of the Hubble constant; the same calculation today shows a smaller fraction, using greater values for luminous mass. Nonetheless, Zwicky did correctly conclude from his calculation that most of the gravitational matter present was dark. However, unlike modern theories, Zwicky considered "dark matter" to be non-luminous ordinary matter.
Further indications of mass-to-light ratio anomalies came from measurements of galaxy rotation curves. In 1939, H.W. Babcock reported the rotation curve for the Andromeda Galaxy (now called the Andromeda Galaxy), which suggested the mass-to-luminosity ratio increases radially. He attributed it to either light absorption within the galaxy or modified dynamics in the outer portions of the spiral, rather than to unseen matter. Following Babcock's 1939 report of unexpectedly rapid rotation in the outskirts of the Andromeda Galaxy and a mass-to-light ratio of 50; in 1940, Jan Oort discovered and wrote about the large non-visible halo of NGC 3115.
One of the observations that served as evidence for the existence of galactic halos of dark matter was the shape of galaxy rotation curves. These observations were done in optical and radio astronomy. In optical astronomy, Vera Rubin and Kent Ford worked with a new spectrograph to measure the velocity curve of edge-on spiral galaxy with greater accuracy.
At the same time, radio astronomers were making use of new Radio telescope to map the 21 cm line of atomic hydrogen in nearby galaxies. The radial distribution of interstellar atomic hydrogen (H) often extends to much greater galactic distances than can be observed as collective starlight, expanding the sampled distances for rotation curves – and thus of the total mass distribution – to a new dynamical regime. Early mapping of Andromeda galaxy with the telescope at Green Bank and the dish at Jodrell Bank already showed the H rotation curve did not trace the decline expected from Keplerian orbits.
As more sensitive receivers became available, Roberts & Whitehurst (1975) were able to trace the rotational velocity of Andromeda to 30 kpc, much beyond the optical measurements. Illustrating the advantage of tracing the gas disk at large radii; that paper's Figure 16 combines the optical data (the cluster of points at radii of less than 15 kpc with a single point further out) with the H data between 20 and 30 kpc, exhibiting the flatness of the outer galaxy rotation curve; the solid curve peaking at the center is the optical surface density, while the other curve shows the cumulative mass, still rising linearly at the outermost measurement. In parallel, the use of interferometric arrays for extragalactic H spectroscopy was being developed. Rogstad & Seth Shostak (1972) published H rotation curves of five spirals mapped with the Owens Valley interferometer; the rotation curves of all five were very flat, suggesting very large values of mass-to-light ratio in the outer parts of their extended H disks. In 1978, Albert Bosma showed further evidence of flat rotation curves using data from the Westerbork Synthesis Radio Telescope.
In 1978, Gary Steigman et al. presented a study that extended earlier cosmological relic-density calculations to any hypothetical stable, electrically neutral, weak-scale lepton, showing how such a particle's abundance would "freeze out" in the Early universe and providing analytic expressions that linked its mass and weak interaction cross-section to the present-day matter density. By decoupling the analysis from specific neutrino properties and treating the candidate generically, the authors set out a framework that later became the standard template for weakly interacting massive particles (WIMPs) and for comparing Particle physics models with cosmological constraints. Though subsequent work has refined the methodology and explored many alternative candidates, this paper marked the first explicit, systematic treatment of dark matter as a new particle species beyond the Standard Model.
By the late 1970s the existence of dark matter halos around galaxies was widely recognized as real, and became a major unsolved problem in astronomy.
According to the current consensus among cosmologists, dark matter is composed primarily of some type of not-yet-characterized subatomic particle.
The search for this particle, by a variety of means, is one of the major efforts in particle physics.
In principle, "dark matter" means all components of the universe which are not visible but still obey In practice, the term "dark matter" is often used to mean only the non-baryonic component of dark matter, i.e., excluding "missing baryons". Context will usually indicate which meaning is intended.
If Kepler's laws are correct, then the obvious way to resolve this discrepancy is to conclude the mass distribution in spiral galaxies is not similar to that of the Solar System. In particular, there may be a lot of non-luminous matter (dark matter) in the outskirts of the galaxy.
As with galaxy rotation curves, the obvious way to resolve the discrepancy is to postulate the existence of non-luminous matter.
Generally, these three methods are in reasonable agreement that dark matter outweighs visible matter by approximately 5 to 1.
Strong lensing is the observed distortion of background galaxies into arcs when their light passes through such a gravitational lens. It has been observed around many distant clusters including Abell 1689. By measuring the distortion geometry, the mass of the intervening cluster can be obtained. In the weak regime, lensing does not distort background galaxies into arcs, causing minute distortions instead. By examining the apparent shear deformation of the adjacent background galaxies, the mean distribution of dark matter can be characterized. The measured mass-to-light ratios correspond to dark matter densities predicted by other large-scale structure measurements.
The CMB is very close to a perfect blackbody but contains very small temperature anisotropies of a few parts in 100,000. A sky map of anisotropies can be decomposed into an angular power spectrum, which is observed to contain a series of acoustic peaks at near-equal spacing but different heights. The locations of these peaks depend on cosmological parameters. Matching theory to data, therefore, constrains cosmological parameters.The details are technical. For an intermediate-level introduction, see
The CMB anisotropy was first discovered by COBE in 1992, though this had too coarse resolution to detect the acoustic peaks.
After the discovery of the first acoustic peak by the balloon-borne BOOMERanG experiment in 2000, the power spectrum was precisely observed by WMAP in 2003–2012, and even more precisely by the Planck spacecraft in 2013–2015. The results support the Lambda-CDM model.
The observed CMB angular power spectrum provides powerful evidence in support of dark matter, as its precise structure is well fitted by the Lambda-CDM model, but difficult to reproduce with any competing model such as modified Newtonian dynamics (MOND).
Dark matter provides a solution to this problem because it is unaffected by radiation. Therefore, its density perturbations can grow first. The resulting gravitational potential acts as an attractive potential well for ordinary matter collapsing later, speeding up the structure formation process.
The significance of the free streaming length is that the universe began with some primordial density fluctuations from the Big Bang (in turn arising from quantum fluctuations at the microscale). Particles from overdense regions will naturally spread to underdense regions, but because the universe is expanding quickly, there is a time limit for them to do so. Faster particles (hot dark matter) can beat the time limit while slower particles cannot. The particles travel a free streaming length's worth of distance within the time limit; therefore this length sets a minimum scale for later structure formation. Because galaxy-size density fluctuations get washed out by free-streaming, hot dark matter implies the first objects that can form are huge supercluster-size pancakes, which then fragment into galaxies, while the reverse is true for cold dark matter.
Deep-field observations show that galaxies formed first, followed by clusters and superclusters as galaxies clump together, and therefore that most dark matter is cold. This is also the reason why neutrinos, which move at nearly the speed of light and therefore would fall under hot dark matter, cannot make up the bulk of dark matter.
These massive objects that are hard to detect are collectively known as MACHOs. Some scientists initially hoped that baryonic MACHOs could account for and explain all the dark matter.
However, multiple lines of evidence suggest the majority of dark matter is not baryonic:
Unlike baryonic matter, nonbaryonic particles do not contribute to the formation of the Chemical element in the early universe (Big Bang nucleosynthesis) and so its presence is felt only via its gravitational effects (such as weak lensing). In addition, some dark matter candidates can interact with themselves (self-interacting dark matter) or with ordinary particles (e.g. WIMPs or Weakly Interacting Massive Particles), possibly resulting in observable by-products such as gamma rays and neutrinos (indirect detection). Candidates abound (see the table above), each with their own strengths and weaknesses.
Because supersymmetry extensions of the Standard Model of particle physics readily predict a new particle with these properties, this apparent coincidence is known as the " WIMP miracle", and a stable supersymmetric partner has long been a prime explanation for dark matter. Experimental efforts to detect WIMPs include the search for products of WIMP annihilation, including , and in nearby galaxies and galaxy clusters; direct detection experiments designed to measure the collision of WIMPs with Atomic nucleus in the laboratory, as well as attempts to directly produce WIMPs in colliders, such as the Large Hadron Collider at CERN.
In the early 2010s, results from direct-detection experiments along with the lack of evidence for supersymmetry at the Large Hadron Collider (LHC) experiment have cast doubt on the simplest WIMP hypothesis.
The oscillations of the axion field about the minimum of the effective potential, the so-called misalignment mechanism, generate a cosmological population of cold axions with an abundance depending on the mass of the axion. With a mass above 5 electron-volt ( times the electron mass) axions could account for dark matter, and thus be both a dark-matter candidate and a solution to the strong CP problem. If inflation occurs at a low scale and lasts sufficiently long, the axion mass can be as low as 1 peV/ c2.
Because axions have extremely low mass, their de Broglie wavelength is very large, in turn meaning that quantum effects could help resolve the small-scale problems of the Lambda-CDM model. A single ultralight axion with a decay constant at the grand unified theory scale provides the correct relic density without fine-tuning.
Axions as a dark matter candidate have gained in popularity in recent years, because of the non-detection of WIMPS.
Primordial black holes as a dark matter candidate has the major advantage that it is based on a well-understood theory (General Relativity) and objects (black holes) that are already known to exist. However, producing primordial black holes requires exotic cosmic inflation or physics beyond the standard model of particle physics, and might also require fine-tuning. Primordial black holes can also span nearly the entire possible mass range, from atom-sized to supermassive.
The idea that primordial black holes make up dark matter gained prominence in 2015
The possibility that atom-sized primordial black holes account for a significant fraction of dark matter was ruled out by measurements of positron and electron fluxes outside the Sun's heliosphere by the Voyager 1 spacecraft. Tiny black holes are theorized to emit Hawking radiation. However the detected fluxes were too low and did not have the expected energy spectrum, suggesting that tiny primordial black holes are not widespread enough to account for dark matter.
Nonetheless, there still exists a largely unconstrained mass range smaller than that which can be limited by optical microlensing observations, where primordial black holes may account for all dark matter.
A problem with modifying gravity is that observational evidence for dark matter – let alone general relativity – comes from so many independent approaches (see the "observational evidence" section above). Explaining any individual observation is possible but explaining all of them in the absence of dark matter is very difficult. Nonetheless, there have been some scattered successes for alternative hypotheses, such as a 2016 test of gravitational lensing in entropic gravity and a 2020 measurement of a unique MOND effect.
The prevailing opinion among most astrophysicists is that while modifications to general relativity can conceivably explain part of the observational evidence, there is probably enough data to conclude there must be some form of dark matter present in the universe.
These experiments can be divided into two classes: direct detection experiments, which search for the scattering of dark matter particles off atomic nuclei within a detector; and indirect detection, which look for the products of dark matter particle annihilations or decays.
These experiments mostly use either cryogenic or noble liquid detector technologies. Cryogenic detectors operating at temperatures below 100 mK, detect the heat produced when a particle hits an atom in a crystal absorber such as germanium. Noble gas detectors detect scintillation produced by a particle collision in liquid xenon or argon. Cryogenic detector experiments include such projects as CDMS, CRESST, EDELWEISS, and EURECA, while noble liquid experiments include LZ experiment, XENON, DEAP, ArDM, WARP, DarkSide, PandaX, and LUX, the Large Underground Xenon experiment. Both of these techniques focus strongly on their ability to distinguish background particles (which predominantly scatter off electrons) from dark matter particles (that scatter off nuclei). Other experiments include SIMPLE and PICASSO, which use alternative methods in their attempts to detect dark matter.
Currently there has been no well-established claim of dark matter detection from a direct detection experiment, leading instead to strong upper limits on the mass and interaction cross section with nucleons of such dark matter particles. The DAMA/NaI and more recent DAMA/LIBRA experimental collaborations have detected an annual modulation in the rate of events in their detectors, which they claim is due to dark matter. This results from the expectation that as the Earth orbits the Sun, the velocity of the detector relative to the dark matter halo will vary by a small amount. This claim is so far unconfirmed and in contradiction with negative results from other experiments such as LUX, SuperCDMS and XENON100.
A special case of direct detection experiments covers those with directional sensitivity. This is a search strategy based on the motion of the Solar System around the Galactic Center. A low-pressure time projection chamber makes it possible to access information on recoiling tracks and constrain WIMP-nucleus kinematics. WIMPs coming from the direction in which the Sun travels (approximately towards Cygnus) may then be separated from background, which should be isotropic. Directional dark matter experiments include DMTPC, DRIFT, Newage and MIMAC.
A few of the dark matter particles passing through the Sun or Earth may scatter off atoms and lose energy. Thus dark matter may accumulate at the center of these bodies, increasing the chance of collision/annihilation. This could produce a distinctive signal in the form of high-energy . Such a signal would be strong indirect proof of WIMP dark matter. High-energy neutrino telescopes such as AMANDA, IceCube and ANTARES are searching for this signal.
The detection by LIGO in September 2015 of gravitational waves opens the possibility of observing dark matter in a new way, particularly if it is in the form of primordial black holes.
Many experimental searches have been undertaken to look for such emission from dark matter annihilation or decay, examples of which follow.
The Energetic Gamma Ray Experiment Telescope observed more gamma rays in 2008 than expected from the Milky Way, but scientists concluded this was most likely due to incorrect estimation of the telescope's sensitivity.
The Fermi Gamma-ray Space Telescope is searching for similar gamma rays. In 2009, an as yet unexplained surplus of gamma rays from the Milky Way's galactic center was found in Fermi data. This Galactic Center GeV excess might be due to dark matter annihilation or to a population of pulsars. In April 2012, an analysis of previously available data from Fermi's Fermi LAT instrument produced statistical evidence of a 130 GeV signal in the gamma radiation coming from the center of the Milky Way. WIMP annihilation was seen as the most probable explanation.
At higher energies, IACT have set limits on the annihilation of dark matter in dwarf spheroidal galaxies and in clusters of galaxies.
The PAMELA experiment (launched in 2006) detected excess . They could be from dark matter annihilation or from . No excess were observed.
In 2013, results from the Alpha Magnetic Spectrometer on the International Space Station indicated excess high-energy which could be due to dark matter annihilation.
Mention of dark matter is made in works of fiction. In such cases, it is usually attributed extraordinary physical or magical properties, thus becoming inconsistent with the hypothesized properties of dark matter in physics and cosmology. For example:
More broadly, the phrase "dark matter" is used metaphorically in fiction to evoke the unseen or invisible.
1970s
1980–1990s
Technical definition
Observational evidence
Galaxy rotation curves
Velocity dispersions
Galaxy clusters
Bullet Cluster
Gravitational lensing
Type Ia supernova distance measurements
Redshift-space distortions
Lyman-alpha forest
Cosmic microwave background
Structure formation
Sky surveys and baryon acoustic oscillations
Theoretical classifications
Composition
+ Some dark matter hypotheses quantum chromodynamics axion-like particles fuzzy cold dark matter neutrino sterile neutrinos other particles lightest supersymmetric particle weakly interacting massive particle self-interacting dark matter atomic dark matter strangelet dynamical dark matter macroscopic primordial black holes (See also the accompanying slide presentation. massive compact halo objects (MACHOs) macroscopic dark matter (Macros)
Baryonic matter
Non-baryonic matter
Undiscovered massive particles
Undiscovered ultralight particles
Primordial black holes
Modified gravity
Dark matter aggregation and dense dark matter objects
Detection of dark matter particles
Direct detection
Indirect detection
Collider searches for dark matter
In popular culture
(Registration required)
and dark matter itself has been referred to as "the stuff of science fiction".
(Registration required)
Gallery
See also
Notes
Further reading
External links
|
|